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Abstract: Enzymes possess extremely high catalytic rates, but the catalytic reactions occur only when substrate molecules 
contact with the active site, a quite small part in comparison with the corresponding major protein. Therefore, it is interesting 
from different perspectives to discuss the functions of the major protein outside the active site. In this paper, from the viewpoint 
of diffusion-controlled reactions, the role of the major protein is discussed, and on such a basis, it is pointed out in which case 
the major protein will act like a "hard wall", hindering some part of the substrate molecules from diffusing into the active 
site, and in which case the major protein will behave as a "promoter", accelerating the flow of substrate molecules around 
into the active site so as to increase the rate of diffusion-controlled reactions significantly. Calculated results show that these 
two extremely opposite cases will markedly depend on the size of van der Waals binding energy between substrate molecules 
and the enzyme protein outside active site. 

Smoluchowski1 first put forward the theory of diffusion-con
trolled reactions in colloid-coagulation kinetics. Debye2 developed 
Smoluchowski's theory 26 years later to cover the effect of 
Coulomb interaction between reacting molecules. Since then, 
much attention has been paid to the kinetics of diffusion-controlled 
reactions. A critical review for the papers up to 1960 in this field 
was presented by Noyes.3 More recently, some investigators 
discussed this subject from rather different approaches, taking 
into account correlations among individual particles in the system4,5 

and hydrodynamic interaction between pairs of diffusing parti
cles.6,7 All the above theories are based on a spherically symmetric 
picture, in which no effects of hetergeneity of surface reactivity 
are considered. 

On the other hand, in enzyme kinetics Alberty and Hammes8 

first introduced the diffusion-controlled reaction theory to estimate 
the upper limit of the second-order rate constant between enzyme 
(E) and substrate (S) molecules. Since the active site of an E 
molecule generally occupies only a small part of its surface (the 
so-called surface-active site), or the entire active site may be 
burried in a concave region termed molecular crevice (the so-called 
cavity-active site), the spherically symmetric diffusion picture can 
obviously no longer apply. They therefore proposed a model of 
semispherically symmetric diffusion (hereafter abbreviated as the 
semispherical model) as illustrated in Figure 1, where it is assumed 
that the major protein outside the active site acts like a "hard 
wall", obstructing the flow of S molecules from the left of the wall 
to the active site, and the active site is modeled as a small sem-
isphere so that a semispherically symmetric diffusion picture is 
established. Their pioneer work has greatly stimulated the the
oretical investigation of enzyme-catalysed fast reactions although 
such a model is rather simple. In fact, with the research of fast 
kinetics in molecular biology becoming more advanced, the 
nonspherically symmetric effects cannot be ignored and the related 
mathematic problems have to be solved, although which, unfor
tunately, are much more difficult than those in the spherically 
symmetric case. Thus, recently, many attempts have been made 
to develop the nonspherically symmetric difussion-controlled re
action theory, and a series of models put forward. They can be 
classified as follows. 

Classification and Discussion of Models 

1. Sole and Stockmayer9,10—considering the reaction between 
two spherical molecules, each of which bears a surface-active site, 
and taking both translational and rotational movements into 
account, with no molecular forces between reacting molecules 
being involved. Numerical calculations are used to obtain the 
desired results. 

2. Schurr and Schmitz11,12—studying the reaction between a 
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spherical molecule with a surface-active site and a reaction spot 
on a plane surface. Both translational and rotational movements 
of the spherical molecule are counted, but no force field is involved. 

3. Chou et al13"22—considering the reaction between a big E 
molecule with one or several16,17 surface-active sites and a small 
S molecule of uniform reactivity (Figure 2). Various molecular 
forces between E and S molecules are taken into consideration, 
but no rotational movement is involved. 

4. Richter and Eigen23—discussing the reaction between two 
spheroidal molecules in order to investigate the surprisingly high 
association rate of repressor to nonoperator DNA. A model is 
presented in which unspecific binding to any part of the DNA 
is assumed together with subsequent diffusion along the chain, 
but no molecular forces are concerned. 

5. Zhou24—a simplified model for nonspherically symmetric 
diffusion-controlled reactions between E and S molecules is de
scribed. On such a basis an approximate analytic expression for 
calculating the upper limit of the rate constant is derived and some 
critical relations discussed. 

6. Chou25—a model for investigating the kinetic characters 
of the cavity-active site is put forward as illustrated in Figure 3. 
On such a basis the mathematical formulation, in which the 
molecular forces between E and S molecules are also involved, 
for calculating the corresponding diffusion-controlled reaction rate 
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Figure 1. The model of semispherically symmetric diffusion. The dotted 
part is the active semisphere. W is a "hard wall". 

Figure 2. The model describing the reaction between a big E molecule 
and a small S molecule when the spatial factor and force field factor are 
taken into account. 

Figure 3. The model for investigating the kinetic characters of cavity-
active site as proposed by Chou25 and Samson and Deutch.26 

is presented and an actual calcula ted result is given, which can 
be well used to explain the exper imenta l results. 

7. Samson and Deutch 2 6 —taking a model basically the same 
as in class 6 but with an approx imate expression presented for 
calculating the diffusion-controlled reaction rate in assuming that 
no molecular forces exist. 

As is well known, an E molecule can usually be t reated as a 
spherical molecule, and also there generally exist various molecular 
forces, such as Cou lomb force and van der W a a l s force,27"29 

between E and S molecules. Therefore among the above clas
sification of models, it would be more suitable to take class 3 or 
class 6 to discuss diffusion-controlled reactions of enzymes. W e 
would prefer to adopt class 3 here not only due to more simplicity 
but also because the upper limit of reaction rates calculated in 
both cases is in the same order of magni tude 2 5 when the van der 
Waals binding energy is greater than 6kT. Furthermore, although 
in the model of class 3, for ma themat ica l convenience, no effect 
of rotat ional movements is concerned, such an approximate 
t rea tment is rat ional at least for reaction systems discussed here 
due to the following reason. As is well known, the relaxation t ime 
for rotational Brownian motion of a sphere is proportional to the 
third power of radius or to the molecular weight, hence the im
portance of this kind of motion in restoring influence on the rate 
of reaction will be much different for a biomacromolecule and 

Figure 4. Sa is the surface of the "sink" for an E-S reaction system. Sb 
is the accessible surface22 of an S molecule to the major protein outside 
the active site. RQ = RE + Rs is the sum of the radii of an E molecule 
and an S molecule. 

a small substrate . In most E - S reaction systems, the molecular 
weight of E molecules is two or three order of magni tude larger 
than tha t of S molecules,8 '31 so it follows that Ds

rot » DE
m. As 

a result, the rotat ional Brownian motion of an S molecule is so 
fast tha t the whole molecule can be t rea ted as a small uniform 
sphere, while the rotational Brownian motion of the E molecule 
is so slow tha t its effect can be neglected. The numerical esti
mation given by Schurr and Schmitz1 1 '1 2 also confirms the above 
assumption. 

Nevertheless, due to its simplicity, the semispherical model is 
still frequently adopted by many biochemists30"37 to est imate the 
upper limit of the second-order ra te constants between E and S 
molecules. Since the upper limit is often used as an impor tant 
criterion in judging3 0 '3 2 '3 7 whether a supposed enzyme-catalyzed 
mechanism is reasonable or not, it is worthwhile to make a rather 
careful comparison between the semispherical model and the model 
of class 3. Especially, as we shall see below, the role of the major 
protein outside the active site on diffusion-controlled reactions 
will be obviously revealed through such a comparison. 

Based on the semispherical model (Figure 1), the following 
formula for calculating the upper limit of the second-order ra te 
constant between E and S molecules is natural ly ob ta ined 8 3 1 

according to the Smoluchowski -Debye theory:1 '2 

k • = 
"•semi 

1-KDN 

1000 C exp[U(l)/kT] 
d_/ 

P 

(1) 

where D is the sum of the diffusion coefficients of S and E 
molecules, N the Avogadro constant, U(I) the interaction potential 
between the S molecule and the active site of the E molecule, k 
the Bol tzmann constant , T the absolute t empera ture , and r0 = 
5 A is the sum of the radii of the active semisphere and an S 
molecule. 

As mentioned above, in the model of Figure 1, the major protein 
outside the active site is assumed as a "hard wall", which excludes 
all the effects coming from the left side of this wall, such as the 
flow of S molecules and the molecular forces between S molecules 
and the major protein. To take these effects into account, we have 
to solve the following nonspherically symmetr ic equations given 
by Chou and his co-workers1 3"1 7 (F igure 4) : 
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where 

V[exp(-[//&T)VC*] = O 

C*U*0 = 0 (0 < 6 < B1) 

(dC*/dr)\r=Ro = 0 (fl. < 8 < TT) 

C * L _ „ = C0 (0 < e < TT) 

C* = ^ 7 C 

(2) 

(3) 

while C is the concentration of S molecules, C0 is the bulk con
centration, V is the Hamilton operator, and 

U = U(r, 8, 4>) (4) 

which means now the potential is not only dependent on r, the 
distance between the centers of E and S molecules, but also on 
the spherical coordinates 8 and 4>. 0a is the maximal deviation 
angle of the "sink" in the E-S fast reaction systems. The de
pendence of 0a on the surface area of the "sink" is given by 

5 a = 4TTR0
2 sin2 (6Jl) (5) 

where R0 is the sum of the radii of one E molecule and one S 
molecule. As for how to understand the rationality of the "sink" 
model in enzyme kinetics, the reader may refer to ref. 9 and 16, 
where a stochastic analysis is presented, and the corresponding 
physical picture described. For the comparison to be made in as 
similar conditions as possible, Sa should be given the same area 
as that of the active semisphere of Figure 1. We thus have 

0a = 2 sin"1 y/SJAvR.1 = 2 sin"1 (r0/^/lR0) (6) 

The corresponding upper limit of the diffusion-controlled reaction 
rate can be expressed as13'14,16 

k - - = 
N 

C0 1000C0 
Jf [-D exp(-C//IcT)VC*] dS = 

DN 

lOOOCo-

dC* DN 
J Js. dr 1000CnJ Js 

dC* 
e-u/kT £k_ d 5 

'Sg0 dr 

(7) 

where / is the total amount of S molecules which, governed by 
the concentration gradient and force field, diffuse to an E molecule 
in unit time, and Sg. = Sa + Sh. When U(r,8,4>) = U(r), eq 7 
can be reduced to 

^l im 
AirDN 

where 

g = Hm 
A/—0 

1000 

.R0+Ar 

JR, 

Mr)IkT __. I 
. geum/kT cos2 _i ( 8 ) 

I J C(r,8)r2 sin 8 dd dtf> dr 
R0 Jo Je, 

.R0+Af ~2-K 
r2 sin e 68 d0 dr 

R0 Jo Je, 
f *C(R0J) sin 6 d8 

Je, 
(9) 

2Cn cos 2 Jt 

is the ratio of the average concentration of S molecules on Sb (see 
Figure 4), the accessible surface of the protein outside the active 
site, to C0, the bulk concentration of S molecules in solution. In 
the general case, however, we have 

g = CC e-<W.*)C* _S (10) 
C0S0J J Sb 

which is a useful index to describe the outline of the concentration 
distribution of S molecules in the proximity of an E molecule. 

Discussion of the Interaction Potentials 
Generally speaking, the potential between an E and an S 

molecule can be expressed as 

U = £/va„ + U, Coulomb (H) 

Figure 5. An illustration of the Coulomb interaction between an E 
molecule and an S molecule. 

Lifshitz38 has proposed a theory to derive the van der Waals 
potential between two macroscopic bodies (here "macroscopic" 
means large in comparison with atomic dimensions). On the basis 
of the Lifshitz's theory, Langbein39 and Mitchell and Ninhan40 

calculated the van der Waals potential between two spherical 
macromolecules, respectively. From their calculations, the van 
der Waals potential between two spherical macromolecules (or 
a macromolecule and a small one) can be expressed as:14,18 

C.n = -U0 (0<d< O0) 

Um = -Uoao[(bo/d)-l]/(b0-a0) (a„ < d < b0) (J2) 

£4 -l/d6 (d»b0) 

where a0 = 0.2 A, b0 = 3 A, and d is the closest approach between 
the S molecule and the E molecule. Such an expression is con
sistent with the experimental reports27"29 that the van der Waals 
binding potential of small neutral molecules to protein molecules 
is about a few kilocalories per mole, and the force range is about 
a few angstroms. In actual calculations, the interaction for d > 
b0 can be neglected. Although t/van is a short-range interaction 
with a force range of only a few angstroms, below we shall see 
that the contribution of £/van to the upper limit of the second-roder 
reaction rate between E and S molecules can by no means be 
ignored. But in the models of classes 1, 2, 4, and 7, no force field 
is taken into account, and in the semispherical model the effect 
of van der Waals force could not be adequately taken into account 
since the major protein of the E molecule is cut off from the active 
site by the "hard wall" as illustrated in Figure 1. Therefore, d 
in eq 12 can only denote the distance of the closest approach 
between an S molecule and the active semisphere, although the 
functional form of t/van could assume the same. As for the reaction 
system with a cavity-active site, expression 12 for van der Waals 
potential can also be used. But when the S molecule enters into 
the active cavity, d should be counted as the closest approach to 
the nearest wall or bottom of the cavity.25 

The Coulomb potential in eq 11 is given by18 (Figure 5) 

U, Coulomt _ t/coulot hZ^s + U, Coulomb, 
Z,ZS -

eR*/<R [Z.Zse0
2 

2\\ + RJ3l 1 + 

1 I eR-/fi eR'/Ji Z Z e2 

2 1 1 + RJJi 1+ RJJiX tl 
(13) 

where Za, Zp, and Z5 are the charge numbers of the active site, 
the remaining part of the enzyme, and the substrate molecule, 

(38) Em. M. Lifshitz, Sov. Phys. JETP (Engl. Transl), 2, 73 (1956). 
(39) D. Langbein, Phys. Rev. B, 2, 3371 (1970). 
(40) D. J. Mitchell and B. W. Ninham, /. Chem. Phys.. 56, 1117 (1972). 
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Table I. The Values of ksem^ k\im, and a Calculated 
under Different Un" 

ksemi (1010/Ms) 
him (10'7Ms) 
a 

0 

0.130 
0.177 
0.265 

2k T 

0.147 
0.257 
0.428 

U0 

3kT SkT 

0.152 0.159 
0.350 0.727 
0.566 0.781 

IkT 

0 164 
1.07 
0.847 

XOkT 

0.170 
1.17 
0.855 

a R0 = 20 A, fla = 20°, D= 7 x 10"6 cm7s, ZpZs - Z&ZS = 0, 
and T= 298 K. 

Table H. The Values of fcsemi, k^m, and a Calculated 
under Different Z^Z5" 

zzzS 

- 8 - 4 0 4 8 

.(10'7Ms) 0.704 
Mim (10'7Ms) 1.752 

0.598 

0.467 
1.471 
0683 

0.170 
1.137 
0.851 

0.018 0.00072 
0.911 0.621 
0.980 0.999 

a Ro = 20 A,RK = 18 A, R5 = 2 A,Ra = 3 A, fla= 20°, D = 7 X 
10"6 cm2/s, U0 = 1OkT, e = 78.56, T= 298 K, and u = 0.01. 

respectively; e0 is the electronic charge; t the dielectric constant 
of the intervening medium; R3 the effective radius18 of the active 
site; and Ti the "thickness" of the ion atmosphere given by 

n = 
1 OQOcA: T 

87Te0
2AV J 

I 1/2 

(14) 

in which n is the ionic strength. However, it is assumed in sem-
ispherical model that the Coulomb interaction exists only between 
the active site and S molecules while not between the rest of the 
protein molecule and S molecules.8,31 That means the net charge 
of an E molecule is wholly concentrated at its active site. Such 
an assumption is not true of course, but the semispherically 
symmetric picture of Figure 1 will otherwise be violated. In other 
words, when using eq 1 to calculate fcsemi, one could not help but 
suppose Zp = 0. For the comparison to be favored, here in 
calculating kiim with eq 7 we also put Zp = 0 although it is not 
necessary as far as the latter model itself is concerned. Moreover, 
put R1 + R5 = r0 = 5 A to make the comparison in as analogous 
conditions as possible. 

Discussion of the Results 
Define the relative deviation 

l*L 
(15) 

which can be used to reflect the percentage of the flow excluded 
by the hard wall. The method for calculating klim is the same as 
in ref 14 and 17. Tables I and II give the values of ksemi, /cljm, 
and a calculated under different values of U0 and Z1Z5, respec
tively. 

From Table I we can see that when U0 is greater than HkT, 
the values of a are already larger than 0.5. That means more than 
50% of the total flow is excluded by the "hard wall", and hence 
eq 1 will no longer give a good approximation. It is well known 
that the van der Waals binding energy of a small neutral molecule 
to a protein molecule in solution is generally from -kT to -16kT. 
If according to ref 27 the van der Waals binding energy is -6.0 
kcal/mol at 25 0C (i.e., U0 =* 1OkT), then the results listed in 
Table II tell us a is always larger than 0.5 even though the 
Coulomb interaction is taken the same in calculating both fcsemi 

and kUm. And in this case Table I tells us klim is one order of 
magnitude larger than kscmi. 

From these results we can obtain the following conclusion: the 
van der Waals force between E and S molecules plays a key role 
in deciding whether the semispherical model is valid or not. In 
other words, the upper limit of the reactions estimated by eq 1 
is reliable only when the van der Waals force is very weak (U0 

< 3kT). It seems at first surprising that the van der Waals force, 

whose action range is as short as only a few angstroms, should 
play so significant a role in raising the diffusion-controlled reaction 
limit. This phenomenon may be understood as follows. Due to 
the van der Waals interaction between E and S molecules, the 
concentration of S molecules on the surface of the major protein 
outside the active site is much higher than that of the bulk solution. 
(If there were no reaction, the concentration of S molecules on 
the surface of the protein molecule would be ~exp\-U(R0)/kT] 
according to Boltzmann statistics.) As a consequence, the diffusion 
flow of S molecules to the "sink" (on whose surface C = 0) around 
the E molecule will be sped up significantly^ Notejhat, due to 
the existance of the force field, rather than / = -DVC, the flow 
should be expressed as16 

' = -De-ulkTVC* = -De-u'kTV{eL'/kTC} (16) 

So even the concentration C on the surface of the major protein 
is higher than C0, the bulk soltuion; still there is a diffusion flow 
driven by the force field from bulk solution toward the E molecule 
to maintain such a very steep concentration gradient around the 
active site. However, if the concentration of S molecules on the 
surface of the major protein is too high, that will be unfavorable 
for the surrounding S molecules to come up. Therefore, when 
a force field (no matter if it is a long range force or short one) 
results in 

« g « exp\-U(R0)/kT] (17) 

which can be deemed as the optimal condition for the diffusion-
controlled reaction of enzymes, we obtain from eq 8 that 

*, im ^ 
4wDN 

1000 
J Rn 

,W)IkT Ar 
(18) 

In this case, the whole surface of an E molecule can be equivalently 
regarded as a big "sink". Such a phenomenon does really exist 
in some biological processes as discussed by Adam and Delbruck41 

and Richter and Eigen,23 who, however, only gave a presumption 
but not the physical mechanism. 

Consequently, when the van der Waals is taken into consid
eration, the major protein outside the active site will play the role 
of a "promoter", and give rise to a fast flow of S molecules around 
the E molecule to its active site. But in the semispherical model, 
this part of the flow is completely blocked by the "hard wall". 
If the van der Waals binding energy is very small (LZ0 < 3&7), 
the concentration of S molecules in the proximity of an E molecule 
will not be much higher than that in the bulk solution, then the 
flow of S molecules around the E molecule to its active site will 
be trifling. In this case, the major protein outside the active site 
will itself play role of a "hard wall" rather than a "promoter" 
during the diffusion-controlled reactions. 

In summary, therefore, the binding energy between E and S 
molecules will play a key role in deciding whether the major 
protein outside the active site acts as a "hard wall" or as a 
"promoter". 

Finally, three points should be mentioned here. 
First, when S molecules diffuse along the surface of an E 

molecule, the diffusion coefficient (the so-called interfacial dif
fusion coefficient) should be different from that in bulk. A similar 
difficulty also appears in the Richter-Eigen model.23 Although 
such a problem still remains to be solved, it will not influence our 
essential results owing to the following: (a) Unlike the Richt
er-Eigen picture23 where there is such an assumption that a 
repressor will enter into a "one-dimensional" diffusion along the 
chain once it binds to any part of DNA, in Chou's picture13,16 there 
is no such a constraint, that S molecules have to keep on the 
surface all the time, even during the diffusion process along the 
surface of a protein molecule, in other words, this kind of S 
molecule still undergoes a "three-dimensional" movement, (b) 
Unlike the Richter-Eigen picture where nearly all the associations 

(41) G. Adam and M. Delbruck, in "Structure Chemistry and Molecular 
Biology", W. H. Freeman, San Francisco, Calif.. 1974, 198-215. 
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of repressors to the DNA follow a "one-dimensional" diffusion 
along the chain, in Chou's picture most of the flow of S molecules 
to the active site comes from the "three-dimensional" diffusion 
around the E molecule in a spherical shell whose thickness is about 
the same as, or a little larger than, the range of van der Waals 
force.18 With the knowledge about the interfacial diffusion 
coefficient, especially about the complicated molecular forces and 
the detailed structure (such as the so-called "icelike" structure) 
on the surface of an E molecule, not yet sufficiently known, the 
present calculations and discussions based on Chou's model are 
rational at least in a sense of approximation. 

Second, there will be a reduction (between 25% and 60%) in 
the rate of diffusion-controlled reaction if the hydrodynamic 
effect6,7 is taken into account. But, in comparison with the role 
of the van der Waals force that gives one order of magnitude in 
raising the rate from that obtained by the semispherical model, 
the role of the hydrodynamic effect is relatively small. Besides, 
what we are interested in here is to compare the semispherical 
model and the Chou's model so as to disicuss the role of the major 
protein outside the active site. While the hydrodynamic effect 

will exert analogous influence on both cases, the principal points 
discussed here are still valid even without taking the hydrodynamic 
effect into account. 

Third, as regards how to take into consideration diffusion of 
product (P) molecules away from an E molecule, the reader may 
refer to the paper by Chou and Forsen.42 There the diffusion-
controlled effects in reversible enzymatic fast reaction systems 
are discussed, and also it is pointed out that, in such a case, the 
diffusion-controlled reaction rate is related not only to the diffusion 
coefficient, the force field, the size of an active site, and so on, 
but also to the ratio of the concentration of the P molecules to 
that of the S molecules when the reaction system attains equi
librium. Of course, such an effect will exert the same influence 
on both the semispherical model and Chou's model, too. 
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Abstract: The stereochemistry of the carbon-carbon bond-forming step in the electrophilic intermolecular l'-2 condensation 
of 3-methyl-2-butenyl acetate (1-0Ac) to yield lavandulyl acetate (2-0Ac) was studied. Treatment of (15)-[1-2H]3-
methyl-2-butenyl acetate ((15)-[l-2H]l-OAc) with aluminum trichloride in ethyl acetate gave labeled lavandulyl acetate 
([1,3-2H2]2-OAc) (30%) and isoprene (65%) as the major products. The configurations at C(I), C(2), and C(3) and the relative 
abundances of the diastereomers of [1,3-2H2]I-OAc were determined by converting the mixture to [2,4-2H2]3-(2'-propyl)-
butyrolactone ([2,4-2H2]S). The intensities of 1H resonances characteristic of each diastereomer were measured with the aid 
of Pirkle's chiral shift reagent, (5)-(+)-2,2,2-trifluoro-l-(9-anthryl)ethanol. The analysis showed that equal amounts of the 
(15,25,3/?), (15,2/?,3/?), (15,25,35), and (15,2/?,35) diastereomers of [l,3-2H2]2-OAc were obtained, signifying that the 
l'-2 condensation was stereorandom at C(I) of the electrophilic isoprene unit. 

Allylic cations are thought to play important roles in the 
condensation reactions that constitute the major bond-forming 
reactions in the terpene biosynthetic pathway. Examples include 
the V-A coupling reaction used to attach isoprenoid residues in 
a sequential fashion to a growing allylic terpene chain,4 the l'-2 
coupling reaction which produces the nonhead-to-tail fusion of 
residues found in some irregular monoterpenes5 and carotenoids,6 

the T-2-3 coupling reaction recently discovered in the sterol7-8 

and carotenoid pathways,9 and numerous intramolecular cycli-
zations.10 The transformations can all be rationalized as elec
trophilic condensations, and in some instances experiments have 
confirmed the electrophilic character of the enzyme-catalyzed 
reactions.4'""14 
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